L'uso degli antibiotici in Italia Rapporto Nazionale Anno 2019

Lettura critica del Rapporto

Anna Maria Marata

THE JOURNAL OF INFECTIOUS DISEASES • VOL. 122, NO. 5 • NOVEMBER 1970 © 1970 by the University of Chicago. All rights reserved.

Changing Ecology of Bacterial Infections as Related to Antibacterial Therapy

Maxwell Finland

However, the unnecessary and improper use of antibacterial agents in treatment, and particularly for prophylaxis, that is not highly specific and sharply circumscribed, will have to be modified or stopped completely. This applies particularly to the use of large doses of multiple agents which eliminate the normal and susceptible flora and permit the multiplication of resistant species, which ordinarily are nonpathogenic, to the point where some of them became pathogenic and invasive. It would also be prudent to use new and effective agents selectively, and whenever possible in a manner that would avoid or tend to minimize the development and spread of organisms resistant to them.

Table 4. Relation of hospitalization to resistance of *Staphylococcus aureus*, Boston City Hospital, 1959–1960

Relation to ther- apy and hospital-	No. of		% stra	ins resis	stant to	
ization*	strains	P†	S	T	С	E
1	39	58	7	15	0	6
2	116	76	31	24	0	8
3	127	80	40	35	2	14
4	74	86	58	43	10	30
5	210	89	73	67	24	47
6	71	91	85	80	33	67
7	118	81	32	31	2	13
8	89	81	40	35	11	21
<mark>9</mark>	121	97	83	83	31	62

Note.—From Wallmark and Finland [10].

† P, penicillin; S, streptomycin; T, tetracycline; C, chloramphenicol; E, erythromycin.

^{*} Sources of strains: 1, out-patient, without prior hospitalization or recent antibiotic therapy; 2, out-patient, status of prior hospitalization or antibiotic therapy not determined; 3, first or second hospital day; 4, third to seventh hospital day; 5, after seventh hospital day; 6, cultured at autopsy; 7, in hospital <2 days, no prior antibiotics; 8, in hospital >7 days, no prior antibiotics; 9, in hospital >7 days after antibiotics. Categories 3-6 include those with and without prior antibiotics.

THE JOURNAL OF INFECTIOUS DISEASES • VOL. 122, NO. 5 • NOVEMBER 1970 © 1970 by the University of Chicago. All rights reserved.

Changing Ecology of Bacterial Infections as Related to Antibacterial Therapy

Maxwell Finland

However, the unnecessary and improper use of antibacterial agents in treatment, and particularly for prophylaxis, that is not highly specific and sharply circumscribed, will have to be modified or stopped completely. This applies particularly to the use of large doses of multiple agents which eliminate the normal and susceptible flora and permit the multiplication of resistant species, which ordinarily are nonpathogenic, to the point

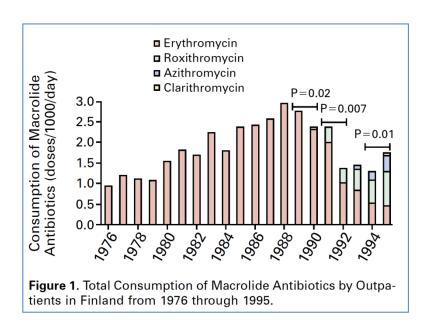
Table 4. Relation of hospitalization to resistance of *Staphylococcus aureus*, Boston City Hospital, 1959–1960

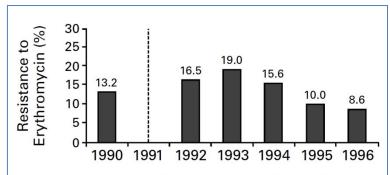
Relation to ther- apy and hospital-	No. of		% stra	ins resis	stant to	
ization*	strains	P†	S	T	С	E
1	39	58	7	15	0	6
2,	116	76	31	24	0	8
3	127	80	40	35	2	14
4	74	86	58	43	10	30
5	210	89	73	67	24	47
6	71	91	85	80	33	67
7	118	81	32	31	2	13
8	89	81	40	35	11	21
<u>9</u>	121	<mark>97</mark>	83	83	31	62

Note.—From Wallmark and Finland [10].

Infection and Antibiotic Usage at Boston City Hospital: Changes in Prevalence during the Decade 1964–1973

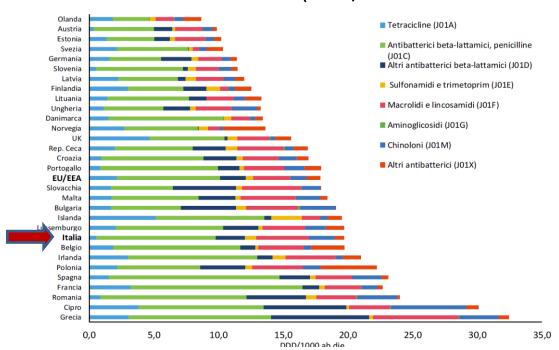
John E. McGowan, Jr. and Maxwell Finland

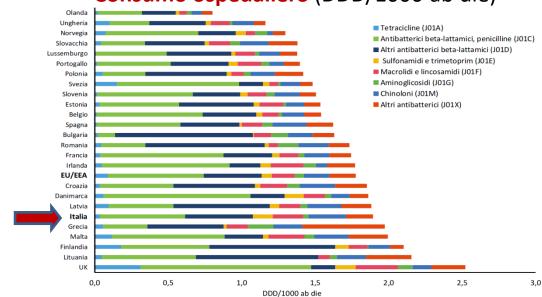

From the Epidemiology Unit, Channing Laboratory, Thorndike Memorial Laboratory, Harvard Medical Unit, Boston City Hospital; and the Department of Medicine, Harvard Medical School, Boston, Massachusetts


^{*} Sources of strains: 1, out-patient, without prior hospitalization or recent antibiotic therapy; 2, out-patient, status of prior hospitalization or antibiotic therapy not determined; 3, first or second hospital day; 4, third to seventh hospital day; 5, after seventh hospital day; 6,

THE EFFECT OF CHANGES IN THE CONSUMPTION OF MACROLIDE ANTIBIOTICS ON ERYTHROMYCIN RESISTANCE IN GROUP A STREPTOCOCCI IN FINLAND

HELENA SEPPÄLÄ, M.D., TIMO KLAUKKA, M.D., JAANA VUOPIO-VARKILA, M.D., ANNA MUOTIALA, Ph.D.,
HANS HELENIUS, M.Sc., KATRINA LAGER, M.Sc., PENTTI HUOVINEN, M.D.,
AND THE FINNISH STUDY GROUP FOR ANTIMICROBIAL RESISTANCE*


(N Engl J Med 1997;337:441-6.)


Figure 2. Frequency of Resistance to Erythromycin among Group A Streptococcal Isolates from Throat-Swab and Pus Samples in Finland in 1990 and in 1992 through 1996.

Consumo territoriale (DDD/1000 ab die

Andamento del consumo di antibiotici nel 2019. confronto fra i vari paesi

Consumo ospedaliero (DDD/1000 ab die)

Classifying antibiotics in the WHO Essential Medicines List for optimal use—be AWaRe

www.thelancet.com/infection Vol 18 January 2018

Piano Nazionale di Contrasto dell'Antimicrobico-Resistenza (PNCAR)

2017-2020

Access

Amoxicillin

Amoxicillin and clavulanic acid

Ampicillin

Benzathine benzylpenicillin

Benzylpenicillin

Cefalexin or cefazolin

Chloramphenicol

Clindamycin Cloxacillin

Doxycyline

Gentamicin or amikacin

Metronidazole

Nitrofurantoin

Phenoxymethylpenicillin

Procaine benzylpenicillin

Spectinomycin

Sulfamethoxazole and trimethoprim

Core access antibiotics

Azithromycin

Cefixime

Cefotaxime

Ceftriaxone Ciprofloxacin

Clarithromycin

Piperacillin and tazobactam Meropenem

Vancomycin

* Antibiotics that are also in the Watch group

Watch

Anti-pseudomonal penicillins with beta-lactamase inhibitor

(eq, piperacillin and tazobactam)

Carbapenems or penems (eg, faropenem, imipenem and cilastatin,

meropenem)

Cephalosporins, third generation (with or without beta-lactamase inhibitor;

eg, cefixime, cefotaxime, ceftazidime, ceftriaxone)

Glycopeptides (eq, teicoplanin, vancomycin)

Macrolides (eg, azithromycin, clarithromycin, erythromycin)

Quinolones and fluoroquinolones (eq, ciprofloxacin, levofloxacin,

moxifloxacin, norfloxacin)

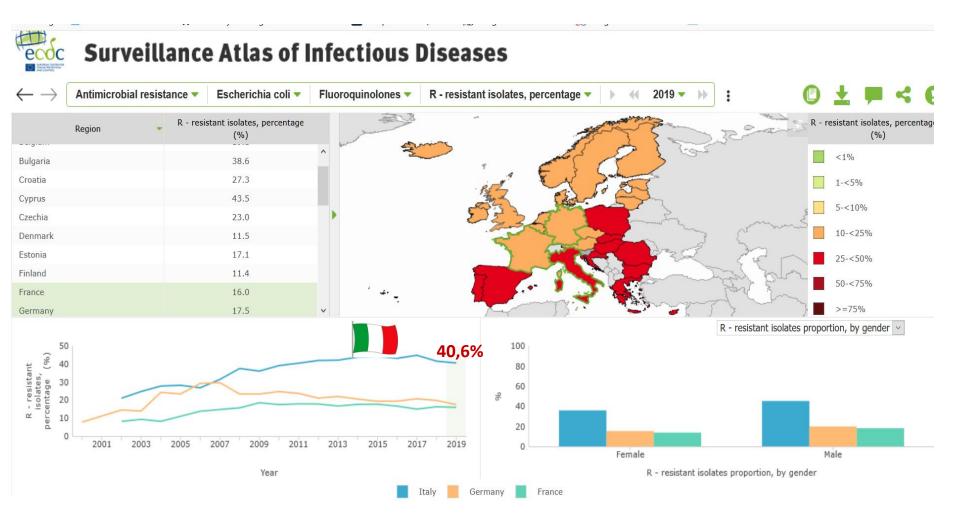
Reserve

Aztreonam

Cephalosporins, fourth generation (eg, cefepime)

Cephalosporins, fifth generation (eg, ceftaroline)

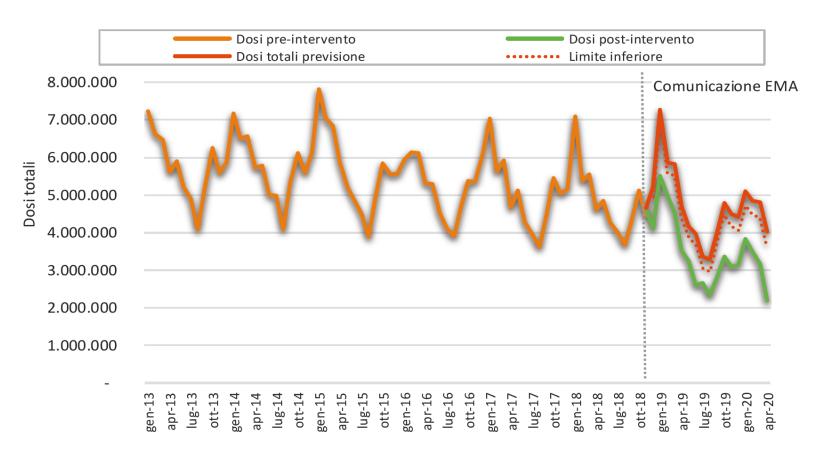
Daptomycin


Fosfomycin (intravenous)

Oxazolidinones (eq, linezolid)

Polymyxins (eq, colistin, polymyxin B)

Tigecycline


ECDC: % di E. Coli con resistenza ai fluorochinoloni (2019)

Impatto della decisione EMA (nov. 2018) sul consumo di fluorochinoloni nel 2019.

Consumo territoriale

^{*} Decisione EMA su antibiotici fluorochinolonici e chinolonici del 16/11/2018 (www.ema.europa.eu/en/news/disabling-potentially-permanent-side-effects-lead-suspension-restrictions-quinolone-fluoroquinolone)

Fluorochinoloni: andamento regionale del consumo (DDD/100 giornate di degenza) nel periodo 2016-2019.

Consumo ospedaliero

Access	Watch	Reserve				
	ciprofloxacina, levofloxacina,					
	lomefloxacina, moxifloxacina,		Classificazione AWaRe	Access	Watch	Reserve
-	norfloxacina, pefloxacina,	-	Classificazione Awaite	Access	Water	Nesel ve
	nrulifloxacina rufloxacina					

Regione	2016	2017	2018	2019	Δ% 19-18	Δ% 19-16
Piemonte	17,6	15,7	19,2	9,5	-50,7	-46,2
Valle d'Aosta	18,2	18,9	15,4	11,0	-28,8	-39,8
Lombardia	14,3	13,8	12,7	9,0	-29,1	-37,2
PA Bolzano	12,3	13,7	14,1	8,7	-38,4	-29,2
PA Trento	11,3	12,4	11,7	8,5	-27,2	-24,7
Veneto	14,4	15,4	14,6	10,1	-30,9	-29,6
Friuli VG	9,9	9,8	9,2	8,7	-6,1	-12,0
Liguria	12,3	13,9	16,1	7,2	-54,9	-41,0
Emilia R.	9,9	11,3	8,8	7,5	-14,9	-24,4
Toscana	19,4	18,9	14,4	8,6	-40,3	-55,7
Umbria	12,6	15,3	14,9	10,8	-27,4	-14,3
Marche	15,1	15,1	14,5	11,4	-21,2	-24,3
Lazio	13,3	12,1	12,2	10,5	-14,3	-21,2
Abruzzo	15,5	14,6	13,6	11,3	-17,1	-26,9
Molise	12,7	12,5	13,6	11,2	-17,6	-12,0
Campania	15,7	17,1	15,4	10,6	-31,3	-32,5
Puglia	16,8	17,5	16,4	11,1	-32,4	-34,2
Basilicata	17,7	21,3	19,5	14,0	-28,6	-21,0
Calabria	16,8	17,6	17,7	13,8	-22,1	-17,5
Sicilia	20,0	20,9	19,4	14,6	-25,0	-27,1
Sardegna	9,9	10,1	14,4	8,9	-38,1	-9,7
<mark>Italia</mark>	14,8	15,1	14,4	10,0	-30,8	-32,3
Nord	13,5	13,7	13,4	8,9	-34,0	-34,3
Centro	15,7	15,4	13,6	10,0	-26,9	-36,3
Sud	16,4	17,3	16,7	11,9	-28,3	-27,1

Obiettivo PNCAR

riduzione >10% del consumo ospedaliero di fluorochinoloni nel 2020 rispetto al 2016

Primi 10 antibiotici per consumo (DDD/1000 ab die) e (% di farmaci equivalenti) per area geografica. Consumo territoriale

Principio attivo	Descrizione IV livello	Italia	Nord	Centro	Sud
amoxicillina/ acido clavulanico	ass. di penicilline inclusi inibitori beta lattamasi	5,8 (46)	4,8 (53)	6,3 (43)	6,9 (41)
claritromicina	macrolidi	2,1 (28)	1,5 (37)	2,3 (26)	2,9 (21)
azitromicina	macrolidi	1,3 (40)	1,2 (50)	1,4 (38)	1,4 (29)
amoxicillina	penicilline ad ampio spettro	1,1 (33)	1,1 (37)	1,0 (40)	1,3 (25)
cefixima	cefalosporine di terza generazione	1,1 (19)	0,8 (26)	1,2 (18)	1,5 (15)
levofloxacina	fluorochinoloni	1,0 (34)	0,8 (46)	1,0 (33)	1,4 (25)
ciprofloxacina	fluorochinoloni	0,7 (37)	0,5 (45)	0,8 (34)	1,0 (33)
fosfomicina	altri antibatterici	0,4 (46)	0,3 (46)	0,4 (46)	0,5 (45)
trimetoprim/ sulfametoxazolo	ass. di sulfonamidi con trimetoprim, inclusi i derivati	0,3	0,3	0,3	0,4
ceftriaxone	cefalosporine di terza generazione	0,3 (53)	0,1 (61)	0,4 (54)	0,5 (50)

Classificazione AWaRe

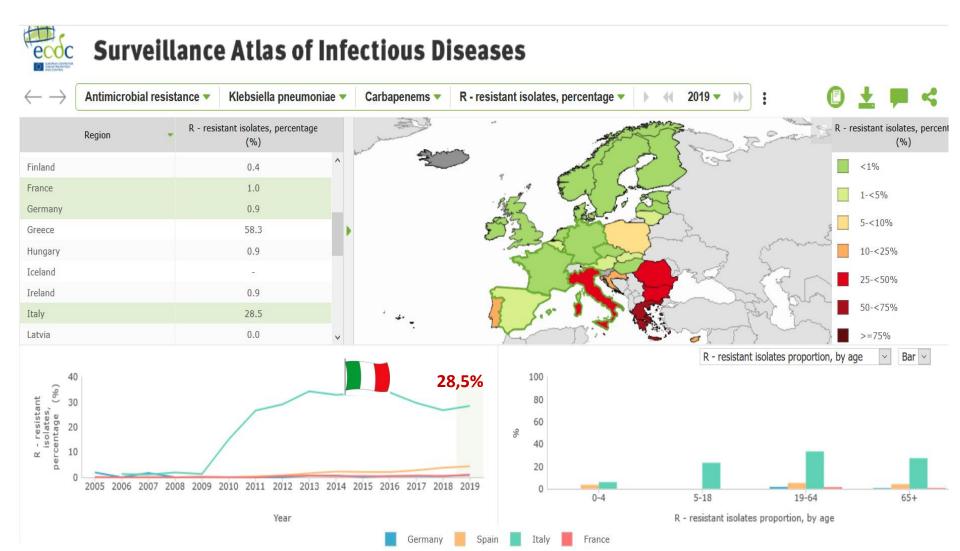
Access

Watch

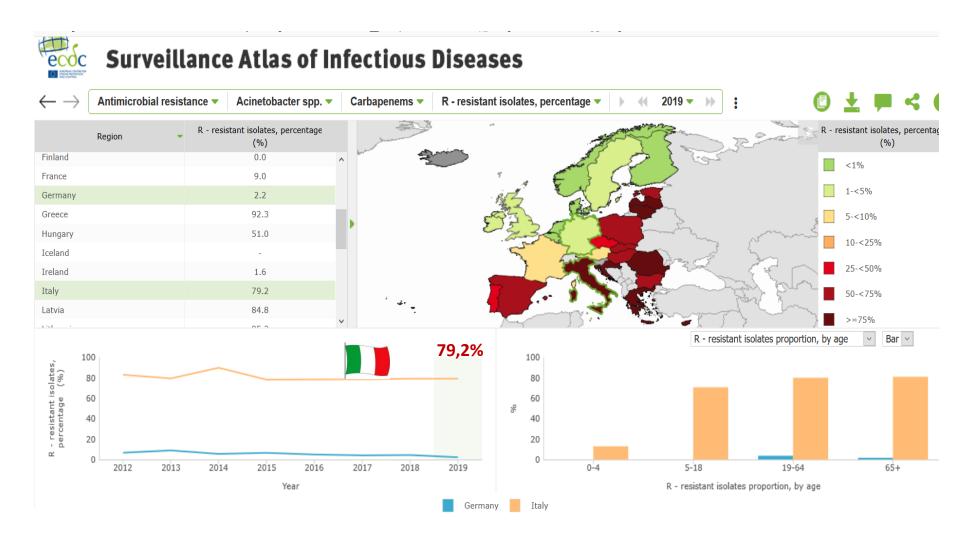
Reserve

Primi 10 antibiotici per consumo (DDD/100 giornate di degenza) e per area geografica. Consumo ospedaliero

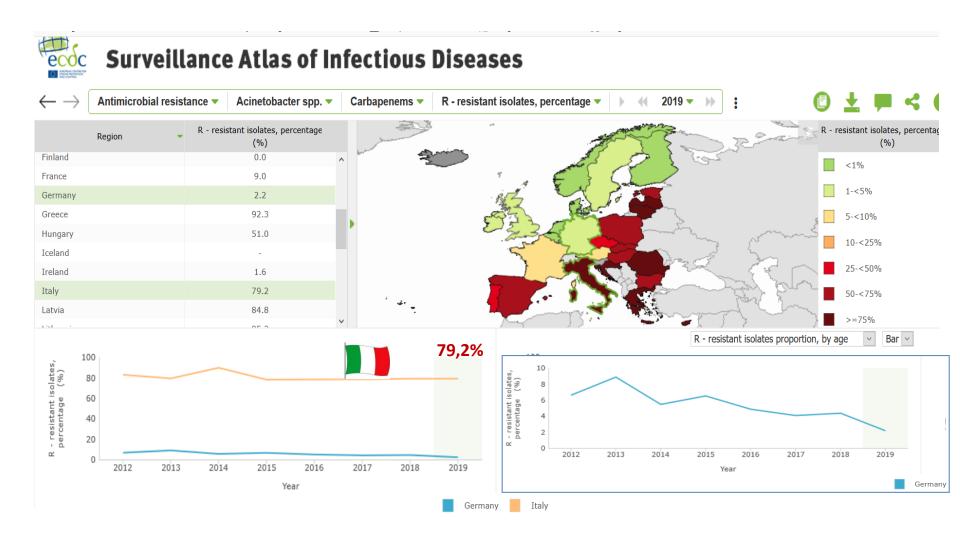
Principio attivo	ATC IV livello	Italia	Nord	Centro	Sud
amoxicillina/acido clavulanico	ass. di penicilline compresi inibitori beta-lattamasi	15,5	18,4	15,7	10,4
ceftriaxone	cefalosporine di terza generazione	11,3	9,6	13,4	12,8
piperacillina/ tazobactam	ass. di penicilline compresi inibitori beta-lattamasi	6,3	7,0	7,1	4,8
levofloxacina	fluorochinoloni	6,3	5,8	5,9	7,4
cefazolina	cefalosporine di prima generazione	4,4	3,9	5,3	4,7
claritromicina	macrolidi	4,0	2,9	5,6	4,9
azitromicina	macrolidi	3,7	4,4	4,2	2,1
ciprofloxacina	fluorochinoloni	3,5	2,7	3,9	4,5
metronidazolo	derivati imidazolici	2,6	2,0	4,1	2,8
meropenem	carbapenemi	1,9	1,7	1,6	2,4


Classificazione AWaRe

Access


Watch

Reserve


ECDC: % di Klebsiella p. con resistenza ai carbapenemi nel 2019

ECDC: % di acinetobacter con resistenza ai carbapenemi nel 2019

ECDC: % di acinetobacter con resistenza ai carbapenemi nel 2019

Antibiotici sistemici: andamento regionale del consumo (DDD/100 giornate di degenza) nel periodo 2016-2019.

Consumo ospedaliero

Regione	2016	2017	2018	2019	Δ% 19-18	Δ% 19-16
Piemonte	83,3	81,9	94,9	86,3	-9,1	3,5
Valle d'Aosta	77,4	76,3	77,3	74,4	-3,7	-3,8
Lombardia	71,2	71,2	69,7	72,7	4,3	2,2
PA Bolzano	57,2	67,6	68,6	66,2	-3,5	15,6
PA Trento	63,1	65,0	71,1	62,2	-12,5	-1,4
Veneto	72,6	76,3	79,1	74,0	-6,5	1,9
Friuli VG	71,8	84,1	81,2	79,9	-1,6	11,3
Liguria	58,0	67,1	70,4	62,0	-12,0	6,8
Emilia R.	67,0	85,9	82,3	82,2	-0,1	22,7
Toscana	88,8	91,0	92,4	90,1	-2,5	1,5
Umbria	67,8	76,6	77,9	80,0	2,8	18,1
Marche	69,6	71,7	80,4	75,4	-6,1	8,4
Lazio	71,1	71,2	78,6	91,8	16,8	29,0
Abruzzo	67,0	72,6	72,8	81,2	11,5	21,2
Molise	52,0	54,6	56,1	68,4	22,0	31,4
Campania	58,0	68,6	68,5	62,1	-9,3	7,1
Puglia	67,4	70,4	72,4	76,1	5,1	13,0
Basilicata	66,9	81,4	75,2	74,1	-1,5	10,8
Calabria	63,7	65,3	71,8	73,5	2,5	15,4
Sicilia	72,9	78,0	81,9	84,0	2,5	15,2
Sardegna	59,5	61,3	65,8	64,7	-1,6	8,8
Italia	70,2	75,3	77,7	77,2	-0,7	9,9
Nord	71,1	76,7	78,4	76,1	-2,9	7,0
Centro	76,7	78,9	83,7	87,0	4,0	13,4
Sud	64,7	70,8	72,9	73,1	0,3	13,0

Obiettivo PNCAR

Riduzione >5% del consumo (DDD/100 giornate di degenza) di antibiotici sistemici in ambito ospedaliero nel 2020 rispetto a 2016

Carbapenemi: andamento regionale del consumo (DDD/100 giornate di degenza) nel periodo 2016-2019.

Consumo ospedaliero

Access	Watch	Reserve
_	cilastatina/imipenem,	_
_	ertapenem, meropenem	_

Regione	2016	2017	2018	2019	Δ% 19-18
Piemonte	1,75	1,01	3,03	3,55	16,9
Valle d'Aosta	1,05	0,16	1,41	1,59	12,5
Lombardia	0,55	0,33	0,29	1,08	270,3
PA Bolzano	0,52	0,44	0,24	0,78	229,6
PA Trento	1,40	0,46	2,44	2,45	0,8
Veneto	2,77	2,28	3,70	3,68	-0,8
Friuli VG	0,76	0,46	0,26	0,14	-45,5
Liguria	0,62	0,45	0,43	0,67	57,1
Emilia R.	1,44	1,67	2,28	2,17	-4,4
Toscana	0,69	0,77	0,70	0,58	-17,3
Umbria	2,56	3,31	4,53	2,68	-40,8
Marche	0,68	0,91	0,76	1,27	66,1
Lazio	2,89	3,09	3,71	4,53	22,2
Abruzzo	1,72	1,03	1,56	2,29	46,7
Molise	1,16	0,51	0,53	1,92	262,2
Campania	0,89	2,80	3,88	3,60	-7,3
Puglia	1,42	1,63	2,32	2,01	-13,2
Basilicata	0,27	1,70	1,64	3,08	88,0
Calabria	1,42	1,17	0,64	1,10	71,7
Sicilia	2,29	3,06	4,81	5,02	4,4
Sardegna	1,75	2,51	1,35	1,90	40,0
<mark>Italia</mark>	1,46	1,59	2,22	2,45	10,1
Nord	1,34	1,06	1,77	2,10	18,2
Centro	1,71	1,93	2,24	2,31	3,4
Sud	1,49	2,28	2,98	3,14	5,3

È quindi molto urgente

- Unire e coordinare (almeno a livello nazionale) le attività (vecchie e nuove) che si sono dimostrate vincenti (nel nostro o in altri Paesi) coinvolgendo tutti i prescrittori (dagli MMG ai medici ospedalieri) e trovare modalità per un uso RIGOROSO ed EQUILIBRATO dei vecchi e dei nuovi antibiotici.
- Definire e supportare progetti di durata adeguata allo scopo.
- Monitorare la prescrizione (informatizzata!!) dei nuovi antibiotici a livello nazionale, ma fornendo una dettagliata reportistica a livello locale in tempi utili.
- Favorire la ricerca di nuovi antibiotici efficaci nei multiresistenti, ma contemporaneamente proteggere il loro uso ed il loro mantenimento in commercio (ad es. individuare nuove strategie di negoziazione).
- Agire anche sull'uso degli antibiotici negli allevamenti di animali.

"La misura dell'intelligenza è data dalla capacità di cambiare quando è necessario."

Albert Einstein

Grazie per l'attenzione