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T2D can be considered an auto-inflammatory disease
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+ evidence of inflammation markers
in T2D (e.g., CRP, IL-6)

CECRET + clinical studies demonstrated the
THE SEGRE potential of use an anti-
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| - therapy
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Within the FP7-EU project MI.EEIONHHZ!E) we developed a
computational model to study the emergence of T2D
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Input parameters

Output variables

Heilbronn [+]

age (37yr), weight (81.8kg), BMI (27.5kg-
m~2), CR diet (-25%kcal for 6 months),
CREX diet (-12.5%kcal for 6 months, con-
trollare pa), LCD diet (890kcal/day for 10
weeks)

weight, glucose, insulin

Kardinaal [7]

age (42.5yr), BMI (24.1kg - m~2), weight
(78.4kg), HFHC diet (+1300kcal/day)

weight, glucose, insulin
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pa intensity (37%VO2max), VO2max
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Data synthesis for ML

ANTHROPOMETRIC MEASURES

Sex
Age
Weight
Height

S € {female, male}
A € {28,38,48,58,68}
W € {underweight, normal, overweight}

BMI, = W,/H?
H € {short, average, tall} 0 o/

PHYSICAL ACTIVITY
Number of sessions per week Npy € {0,1,2,3}

Duration (mins)

Dpy € {low = 30, medium = 60, high = 90}

Intensity (% of VOama) Ip, € {low = 40, high = 60}
FOOD INTAKE (3 meals per day, breakfast, lunch, dinner)
Carbohydrates (grams) Cye € {low, med, high}
Proteins (grams) Py € {low, med, high}

Fats (grams)

Fyg € {low, med, high}

BMI(t) body mass index

x = [S,A,BMly, (Npa, Dpa, Ipa), (Cues Py, Fyi)] GBL(t) glucose base level (fasting glucose)
y = [BMI(t), GBL(t), TNF(t)] TNF(t) inflammation level

t = six months
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Variables’ importance

Sensitivity analysis reveals that: 24 101
: hﬁ (]
. : 1e—05 ﬂ

the variables related to the physical activity (i.e., Np4, Dp4 and
Ip,) appear as the less important

The most important variable for both the BMI and GBL is the
initial value BM1,

GBL also strongly depends on the amount of carbohydrates in
the diet (CME)

As for inflammation (TNF), the most important dependence is . I:]
w

age (A) followed in order of importance by Cyr and then BM[, 00 -

* H. Ishwaran, “Variable importance in binary regression trees and forests,” Electron. J. Statist., vol. 1, pp.
519-537, Nov 2007.




Conclusions

» Atool which allows people’s self-assessment based on lifestyle parameters remains the
most powerful means to increase awareness of the risk of T2D

« The computational model can be used to feed a ML method which demonstrated to perform
well to predict the risk of T2D using notably less computational resources, making it
compliant for mobile devices

« The ML model can be used to compute optimal lifestyle patterns with respect to users’
characteristics
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