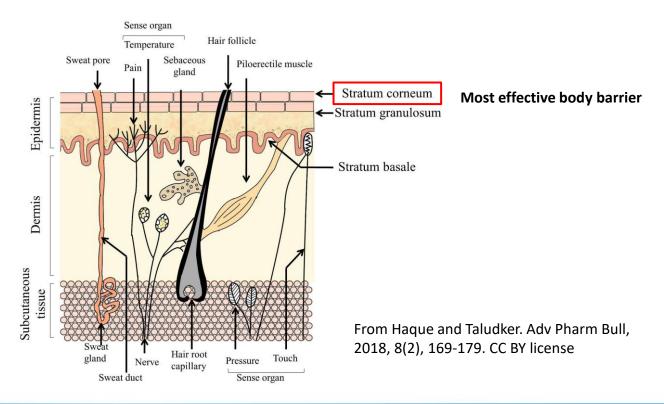


Excipients in cutaneous medicinal products: permeation enhancers and more

Tommaso Eliseo

27/11/25 – QWP training 2025 - Zagreb

Public Declaration of transparency/interests*


The view and opinions expressed are those of the individual presenter and should not be attributed to AIFA

Interests in pharmaceutical industry	NO	Current	From 0 to 3 previous years	Over 3 preavious years
DIRECT INTERESTS:				
1.1 Employment with a company: pharmaceutical company in an executive role				☐ mandatory
1.2 Employment with a company: in a lead role in the development of a medicinal product				☐ mandatory
1.3 Employment with a company: other activities				optional
2. Consultancy for a company				optional
3. Strategic advisory role for a company				optional
4. Financial interests				☐ optional
5. Ownership of a patent				☐ optional
INDIRECT INTERESTS:				
6. Principal investigator				optional
7. Investigator				optional
8. Grant or other funding				optional
9. Family members interests		x	x	☐ optional
10. Serious reasons of convenience				☐ optional

*Name Surname, in accordance with the Regulation for the prevention and handling of conflicts of interest of the Italian Medicines Agency, approved by AIFA Board of Directors (Resolution no. 9 - 12 February 2025).

Undercover

Factors affecting extent of DS activity in cutaneous products

- Concentration
- Pharmaceutical formulation
- Site of application
- Skin condition
- Conditions of application
- Even more complex and unpredictable. See Law *et al.*, Am J Clin Dermatol 21 (2020): Twenty Clinically Pertinent Factors/Observations for Percutaneous Absorption in Humans.

NfG on clinical requirements for LALA (CPMP/EWP/239/95 final)

- change in formulation or in dosage form may influence the efficacy and/or safety
- change in physicochemical properties
- change of non-active ingredients
- change of extent of penetration of the active substance
- dermatological products: vehicle may influence disorder (and not only)

GL on quality and equivalence of LALA cutaneous products (EMA/CHMP/QWP/708282/2018)

Changes significantly influencing efficacy and/or safety

- formulation
- dosage form
- method of administration
- manufacturing process (sequence of addition, structure-forming steps, equipment design, processing parameters)

Effect of formulation/excipients on absorption/permeation

- thermodynamic activity (solubility, crystallisation, supersatusaturation)
- diffusivity in skin (e.g., lipid fluidification, pore formation)
- altering skin barrier properties (e.g., perturbing lipid packing, denaturing proteins)
- altering skin hydration (moisturisers, hygroscopic compounds, occlusive effect)
- perturbation of physiological processes (e.g., skin pH, skin microflora, desquamation, immune response, cell differentiation)

P.1 Description and Composition of the Drug Product

- pharmacopoeial nomenclature (where available), chemical name
- state grade where relevant
- state brand only if required for manufacturability and product quality
- identify and state function(s)

3.2.P.2.1 Components of the Drug Product

- justify selection of the given excipient and its concentration (P.2.3)
- inert ingredient (non-pharmacologically active)
- safety (non-toxic, non-irritant, non-sensitizing, flammability)
- compatibility and stability (binary or more complex combinations, development data, stability studies: maintaining performance through formulation, processing and storage

P.2.1 Components of the Drug Product

- identify and describe function, impact on product quality and manufacturability
- identify and justify grade (potential source and batch variation)
- identify and justify FRCs
- composition for mixtures and/or specific attributes (rheology, molecular weight, substitution grade, etc.)

P.2.3 Formulation development

- laboratory trials and scale-up, stability batches
- pivotal batches (non-clinical studies, clinical trials, equivalence testing)
- validation batches (same formulation/process/packaging as pivotal batches)
- development vs final formulation: thorough characterisation of impact of changes on QTTP and CQAs through informative testing (e.g., viscosity/rheology, IVDR, IVPT if necessary, QbD)

P.4 Control of Excipients

- Ph. Eur. or national EU quality whenever present
- monograph mandatory tests (+ microbial quality/sterility + FRCs)
- description and validation of non-compendial tests
- CoAs are wellcome
- for novel excipients full details on quality and safety in dossier

Conditions and criteria for equivalence testing (waiving)

- same active substance, strength, solution state (in the same phase)
- same salt form and polymorphic form (othewise justify by step-wise approach)
- same pharmaceutical form
- same administration mode
- similarity assessment by **Q1**, **Q2** and Q3

Q1: same qualitative composition

- ALL excipients that influence:
 - active substance solubility and/or thermodynamic activity
 - bioavailability (local and/or systemic)
 - product performance (e.g., *in vitro* release, residence time, occlusivity)
- including excipient grade

Q1 permitted exceptions

- excipient function not related to product performance or administration, i.e. antioxidants, antimicrobial preservatives, colorants, fragrances
 AND
 - no other functions or effect that influences the active substance solubility, thermodynamic activity or bioavailability, product performance, local tolerance and/or safety
- excipient paraffin homologues if function relates to the vehicle or emolliency and no influence on active substance solubility, thermodynamic activity or bioavailability, product performance (moisturing effect remains the same)

Q2: similar quantitative composition

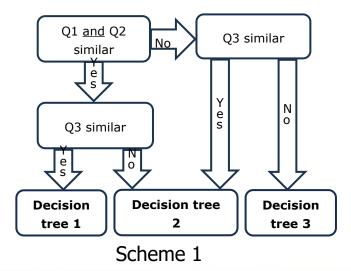
- ALL excipients that influence:
 - active substance solubility and/or thermodynamic activity
 - bioavailability (local and/or systemic)
 - product performance (e.g., in vitro release, residence time, occlusivity)

Q2 permitted difference

- in general, not greater than ±5% w.r.t. RefMP quantity
- specifically , not greater than ±10% w.r.t. RefMP quantity if:
 - function relates to the vehicle properties or emolliency

AND

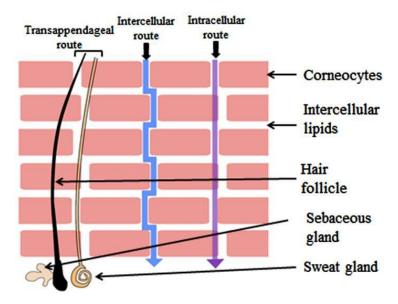
- no function or effect that influences the active substance solubility, thermodynamic activity or bioavailability and product performance (e.g. moisturising or occlusive effect) demonstrated by appropriate data.


Identify Q1 and Q2 of RefMP

- RefMP Product Information
- produced by same manufacturer (declaration)
- patents, bibliographic data
- reverse engineering
- confirmatory analytical testing (at least for critical excipients)
- development data to establish impact of excipient concentration to match RefMP Q3

What if Q1/Q2 different?

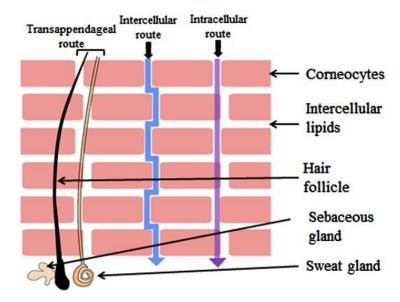
STEPWISE APPROACH: just follow the GL Scheme 1 and the related Decison Trees (1, 2 or 3):



Permeation enhancers

- permeation enhancers (EMA GLs) or penetration enhancers or absorption promoters
- (chemical) components of the formulation
- promote and accelerate penetration and permeation (and/or accumulation/depot): enhance or modify in vivo flux
- permeant themselves and interact with skin (stratum corneum) constituents
- unidirectional and possibly reversible effect

Stratum corneum



- bricks and mortar model
- corneocytes, lipid lamellae, corneodesmosomes and extracellular matrix, water and natural moisturising factor
- highly heterogeneous
- thickness dependent on body site and subject condition

Image from Haque and Taludker. Adv Pharm Bull, 2018, 8(2), 169-179. CC BY license

Permeation process

Permeation:

- sequential steps of partition and diffusion down a concentration gradient throughout lipophilic and hydrophilic domains.
- Clearance relevant at specific sites

Image from Haque and Taludker. Adv Pharm Bull, 2018, 8(2), 169-179. CC BY license

Enhancing permeation: the basic model

From rearranged, simplified Flick's First and Second Law:

$$J_{SS} = \frac{DK_{pc}c_0}{h}$$

 J_{SS} = Flux (transfer of permeant masS per unit area per unit time) at steady state

D = Diffusion coefficient of permeant in the skin

 K_{pc} = Partition coefficient (skin/product)

 C_0 = Concentration of permeant in the product at T_0

H = Skin thickness

P = Permeability coefficient

How to enhance permeation: push or pull

- increase C₀ (increase solubility in formulation, saturation, supersaturation)
- increase D (*stratum corneum* structure/order perturbation/disruption, loosening lipid packing, lipid fluidification, lipid domain/phase separation, lipd extraction)
- increase K_{pc} (partion into lipid bilayers, increase solubility in skin, drag effect, decrease solubility in product)
- decrease h (shorter permeation pathway, stratum corneum structure perturbation/ perturbation/disruption)

Permeation enhancers act on some or all the above elements

Commonly used permeation enhancers

- **ethanol** (solvent, volatile), **isopropanol** (solvent, volatile), other fatty alcohols
- propylene glycol (solvent, volatile)
- oleic acid and other long chain fatty acids
- fatty acid esters (e.g., isopropyl myristate, propylene glycol monocaprylate, propylene glycol monolaurate)
- **diethylenglycol monoethyl ether** (Transcutol®)
- pyrrolidones (e.g., 2-pyrrolidone, NMP)
- terpens and terpenoids (e.g., menthol, 1,8-cineole, D-limolene), essential oils
- surfactants (non-ionic as ionic are typically irritant), some peptides
- water!

Permeation enhancers: what is common?

- high diversity of structural classes, MW, lipophilicy (logP), ion/H bonding capacity
- many (not all) have a polar head and a hydrophobic chain (short/medium/long)
- Quantitative Structure Permeability Relationships (QSPR) specific to each chemical class
- high diversity in mechanisms of action (typically multiple modes)
- enhancement depends on skin membrane and experimental setting
- some clearly identified as PEs in MA applications and some NOT (Annex 3 of EMEA/CHMP/QWP/396951/2006)
- in case of doubt, search in literature, MA registries, assessment reports, request (documented) justification

Non-chemical permeation enhancers

- efforts in research for alternative ways to enhance permeation
- formulation-related or nano-carrier based: microemulsions and nanoemulsions, liposomes and liposome-like carriers, nanoparticles, etc.
- physical methods: iontophoresis, sonophoresis, electroporation, microneedles, etc.
- more relevant for Transdermal Delivery enhancement

Moisturisers

Impact of hydration on permeation and skin integrity

- the stratum corneum contains up to 15-20% of water (deeper epidermis and dermis even more)
- hydration and occlusion enhance permeation
- EMA/CHMP/QWP/708282/2018: choice of excipient and its quantity critical for hydration capacity and potential occlusive effect of the formulation
- if Q1/Q2 non similar but Q3 similar or Q1/Q2 similar but Q3 non similar: products should produce a **similar occlusion**, **hydration of the skin**, **transepidermal water loss**

Moisturisers

Types of moisturisers

- **humectants**: bind and retain water molecules within the *stratum corneum* with long-lasting effect (e.g., glycerol, sorbitol, propylene glycol, panthenol, urea, pyrrolidone carboxilic acid, lactate)
- **occlusive agents**: fill the gaps between skin cells and produce a hydrophobic barrier on the skin preventing water loss (e.g., liquid and white soft paraffin, silicone oils, lanolin, fatty alcohols/esters/ethers, vegetable oils or purified mono- di- triglycerides).
- some humectants and occlusive agents have **emollient properties** contributing also to softening and smoothing the skin, enhanced flexibility, lubricating, spreading, adhesivity, skin feel and perception, patient acceptability and therapy adherence (strong placebo effect).

Moisturisers

How to measure hydration and emolliency

- no guidance in the GL (TEWL only mentioned in Annex III as supporting and check test for tape stripping; TEWL commonly used as skin integrity test in IVPT protocols)
- Is in vitro testing (e.g., appearance, water activity, viscosity/rheology, spreadability, adhesivity) sufficient and predictive?
- In vivo measurements for clinical development typially on healthy skin subjects (e.g., corneometry/electrical/optical methods for skin hydration, transepidermal water loss, skin elasticity, erithema index, skin topography/imaging, sensory assessment, user perception/satisfaction)
- Abridged applications: better matching Q1 and Q2 of the RefMP or SA request

Volatile excipients

Transformation (metamorphosis) of product upon administration

- critical aspect especially for volatile solvents (e.g., ethanol, isopropanol, propellants) and certain dosage forms (e.g., foams, film-forming preparations)
- evaporation impacts thermodynamic activity, rheology, physico-chemical characteristics and permeation rate
- risk of crystallisation in product and in skin
- risk of flammability
- attention to packaging and stability data (solvent loss, low humidity conditions)

Volatile excipients

Quality attributes of product upon administration

- characterisation of residue (e.g., time to drying/evaporation, appearance, residue weight/thickness, polymorphic state, viscosity/elasticity, adhesivity/stickiness, TEWL, IVDR/IVPT, ease of removal)
- test and reference medicinal product residues should be equivalent with respect to quality (pharmaceutical equivalence): identify and compare critical QAs of the residue
- set few, appropriate (*in vitro* surrogate) parameters in specification for product following transformation based on characterisation and development data)

Guidelines

- Quality and equivalence of locally applied, locally acting cutaneous products (EMA/CHMP/QWP/708282/2018)
- Note for guidance on the clinical requirements for locally applied, locally acting products containing known constituents (CPMP/EWP/239/95 final)
- Clinical investigation of corticosteroids intended for use of the skin (3CC26A)

Papers on permeation enhancers

- Williams AC, Barry BW. *Penetration enhancers*. Adv Drug Deliv Rev. 2004;56:603-18
- Lane ME. Skin penetration enhancers. Int J Pharm. 2013; 447:12-21
- Kováčik A, Kopečná M, Vávrová K. Permeation enhancers in transdermal drug delivery: benefits and limitations. Expert Opin Drug Deliv. 2020;17:145-155
- Bakhrushina EO, Shumkova MM, Avdonina YV, Ananian AA, Babazadeh M, Pouya G, Grikh VV, Zubareva IM, Kosenkova SI, Krasnyuk II Jr, Krasnyuk II. *Transdermal Drug Delivery Systems:* Methods for Enhancing Skin Permeability and Their Evaluation. Pharmaceutics. 2025;17:936
- Tapfumaneyi P, Imran M, Alavi SE, Mohammed Y. *Science of, and insights into,* thermodynamic principles for dermal formulations. Drug Discov Today. 2023 Apr;28:103521

Papers on moisturisers and emollients

- Danby SG, Draelos ZD, Gold LFS, Cha A, Vlahos B, Aikman L, Sanders P, Wu-Linhares D, Cork MJ. Vehicles for atopic dermatitis therapies: more than just a placebo. J Dermatolog Treat. 2022;33:685-698
- Franco-Gil ME, Graça A, Martins A, Marto J, Ribeiro HM. Emollients in dermatological creams: Early evaluation for tailoring formulation and therapeutic performance. Int J Pharm. 2024;653:123825
- Ali A, Skedung L, Burleigh S, Lavant E, Ringstad L, Anderson CD, Wahlgren M, Engblom J.
 Relationship between sensorial and physical characteristics of topical creams: A comparative
 study on effects of excipients. Int J Pharm. 2022;613:121370

Papers on measurements of skin hydration

- Qassem M, Kyriacou P. Review of Modern Techniques for the Assessment of Skin Hydration.
 Cosmetics. 2019; 6:19
- Gidado IM, Qassem M, Triantis IF, Kyriacou PA. *Review of Advances in the Measurement of Skin Hydration Based on Sensing of Optical and Electrical Tissue Properties.* Sensors (Basel). 2022 Sep 21;22:7151.
- Berardesca E, Loden M, Serup J, Masson P, Rodrigues LM. *The revised EEMCO guidance for the in vivo measurement of water in the skin.* Skin Res Technol. 2018;24:351-358

Papers on product transformation

- Jin X, Imran M, Mohammed Y. Topical Semisolid Products-Understanding the Impact of Metamorphosis on Skin Penetration and Physicochemical Properties. Pharmaceutics. 2022 Nov 17;14:2487
- Jin X, Alavi SE, Shafiee A, Leite-Silva VR, Khosrotehrani K, Mohammed Y. Metamorphosis of Topical Semisolid Products-Understanding the Role of Rheological Properties in Drug Permeation under the "in Use" Condition. Pharmaceutics. 2023 Jun 11;15:1707
- Pünnel LC, Lunter DJ. Film-Forming Systems for Dermal Drug Delivery. Pharmaceutics. 2021
 Jun 23;13:932
- Zurdo Schroeder I, Franke P, Schaefer UF, Lehr CM. *Development and characterization of film forming polymeric solutions for skin drug delivery.* Eur J Pharm Biopharm. 2007 Jan;65:111-21.

Thank you all!

Tommaso Eliseo t.eliseo@aifa.gov.it

